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Background – use of ML in investment

▪ Rapid development of machine learning methods and ever rising use in 

investment analytics. 

▪ Applications widespread in the investment universe
o Stock-market - equity price forecasting

o Cryptocurrencies

o Exchange rates

o And more …

▪ Deployment of ML algorithms in real estate pricing
o  Forecasting house prices (e.g. Sharma et al., (2024); Mora-Garcia et al., 

(2022)).

o Valuations

▪ Fewer applications in commercial real estate. 



Our research interest

▪ Assess the capacity of alternative ML algorithms for predicting 

commercial prices (yields, capital growth).

▪ We study whether the success of ML algorithms differs by sector.

▪ Econometric/time series forecasting models are also used to compare 

the forecasts with those obtained from ML methods.

▪ Also interested in gains from forecast combination (conventional models 

& ML algorithms).



Background to forecasting

INVESTOR

ASSESSMENT

Cyclical influences

Long-term developments



Tasks

I. Determine model specifications (Dec.87 - Oct.24)

II. Forecasts ▪ Nov.24 - Jan.25 (3-m)

▪ Nov.24 – Apr.25 (6-m)

III. Forecast evaluation ▪ Sample Mar.18 – Oct.24 (3-m) 

and Jun.18 – Oct.24 (6-m) 

▪ Recursive estimation, rolling 

forecasts

▪ Assessment

Target series – UK office yields
(net initial yields)
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Methodologies

➢ ARIMA (Benchmark)

▪ Uses the autocorrelated pattern of data along with the duration of shocks 

to predict; can include external information

➢ Regression model

➢ Elastic net linear regression models

▪ Regularised models; objective is prediction

➢ Random Forest Model: Two specifications:

▪  Internal determinants: 
o  3-month forecasts: Lag 3 to Lag 15

o  6-month forecasts: Lag 6 to Lag 18

▪  All determinants: 
o  3-month forecasts: Uses lag 3 of all variables as features.
o  6-month forecasts: Uses lag 6 of all variables as features.

Data set: About 30 variables are considered containing real economy, 

monetary, financial, survey and real estate data series.



A key task – forecast evaluation

▪ Forecast evaluation – what is our objective? 
o Bias, dispersion (risk), direction, other?

▪ Real world (dynamic)

▪ Rolling samples



The basic academic approach

ARIMAs Regression Elastic Net RF-Int RF-Ext

3-month forecasts

ME -0.008 -0.05 -0.06 0.01 -0.39

MAE 0.08 0.12 0.13 0.14 0.43

MSE 0.011 0.025 0.026 0.036 0.305

U1 0.01 0.02 0.02 0.02 0.05

Dir. Fore 55.7% 73.8% 54.5% 59.7% 46.8%

6-month forecasts

ME -0.02 -0.07 -0.08 -0.04 -0.35

MAE 0.13 0.13 0.21 0.30 0.47

MSE 0.026 0.028 0.059 0.152 0.331

U1 0.02 0.02 0.03 0.04 0.06

Dir. Fore 54.4% 71.4% 46.8% 50.6% 51.9%

ME: Mean error;  MAE: Mean absolute error;  MSE: Mean squared error; U1: Theil’s U1 

statistic;  DirF: Success in predicting the direction of the yield movement three and six 

months ahead correctly. 



Forecasts

Forecast made at end of November 2024  

Office yield (%)

Oct-2024

3-M Forecast (%)

Jan-2025

[Dec-2025]

6-M Forecast (%)

Apr-2025

[Mar-2025]

5.04

ARIMA 4.88 4.79

Regression 

model
5.0

4.83*

(4.75)**

Elastic Net [5.38] [5.51]

RF-internal [5.61] [6.34]

RF-external [5.19] [4.93]

Notes:

• * Model excludes two employment variables

•  ** Feb-2024 forecast (full model)



Key take-aways

➢ Traditional techniques perform well

➢ Sample big enough to train ML algorithms?

➢ Must target a specific forecast objective



Turning point forecast

(6-month ahead, based on regression model)
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Peak predicted, slow to indicate yield decline
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Thank you
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