

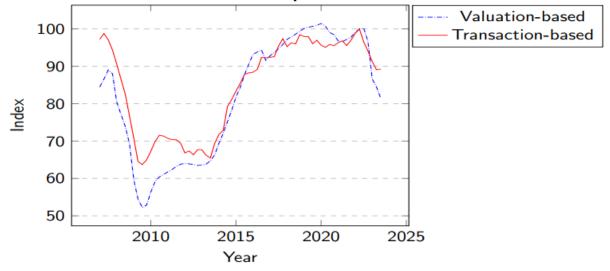
European Commercial Real Estate Data Alliance E-CREDA 2025 Annual Conference

Data-driven real estate & the future of investment decisions in an uncertain world

Revisiting lead-lag relationships in Commercial Real Estate: the case for appraisers

Marc Francke and Willem Vlaming

University of Amsterdam


May 14, 2025

Overview

- Introduction
- 2 Methodology
- O Data
- 4 Results
- **5** Conclusion

Introduction

- Industry consensus that appraisers look at dated transactions and therefore lag the true market (Geltner, 2015)
- However, these are the UK office price indexes at the end of Q2 2023:

And:

		Std.Dev.	1st-Order Autocorr.
United Kingdom	Transaction-based	3.32%	0.63
	Valuation-based	3.57%	0.73
United States	Transaction-based	3.27%	0.61
	Valuation-based	3.22%	0.87
Netherlands	Transaction-based	2.98%	0.91
	Valuation-based	2.33%	□ → < □ → < ≡0,76

Literature Review

- Two large strains of research that touch upon this subject: Price discovery and appraisal smoothing
- Listed markets lead transactions, which lead valuations (Geltner, 2015; Barkham and Geltner, 1995; Ang et al., 2013; Geltner et al., 2003; Yavas and Yildirim, 2011)
- Appraisal smoothing: $V_t^* = \alpha V_t + (1 \alpha) V_{t-1}^*$ (Geltner, 1991, 1993; Fisher et al., 1994; Quan and Quigley, 1991; Edelstein and Quan, 2006)
- Smoothing rational on a property level as only a noisy estimate of the current value is available, on an index level however this leads to lag
- Also more recent research on dynamic appraisal smoothing (Cho et al., 2014) and the optimal desmoothing methodology (Delfim and Hoesli, 2021)

Methodology - Frozen transaction-based indexes

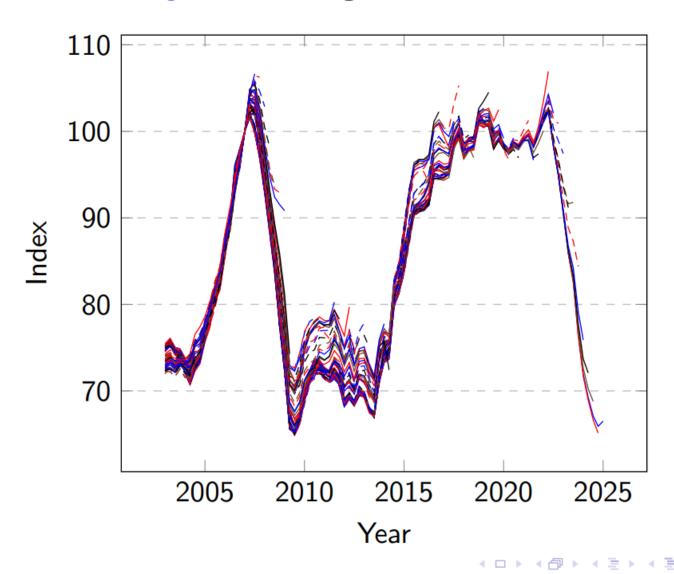
- What is this 'true value' of V_t ?
- Research tends to focus on a long history of transaction prices
- Assuming appraisers could have known those transaction prices, they 'lag'
- Transaction-based indexes however revise significantly (Van de Minne et al., 2020, 2025)
- We estimate repeat-sales indexes with revisions all the way back to 2007 and use those to examine lead-lag relationships

$$r_{ist} = \mu_t - \mu_s + \epsilon_{it} - \epsilon_{is}, \qquad \epsilon \sim \mathcal{N}(0, 2\sigma_{\epsilon}^2)$$
 (1)

$$\mu_t = \mu_{t-1} + \eta_t, \qquad \eta_t \sim \mathcal{N}(0, \sigma_\eta^2) \qquad (2)$$

• Do these classic lead-lag relationships hold up with frozen indexes?

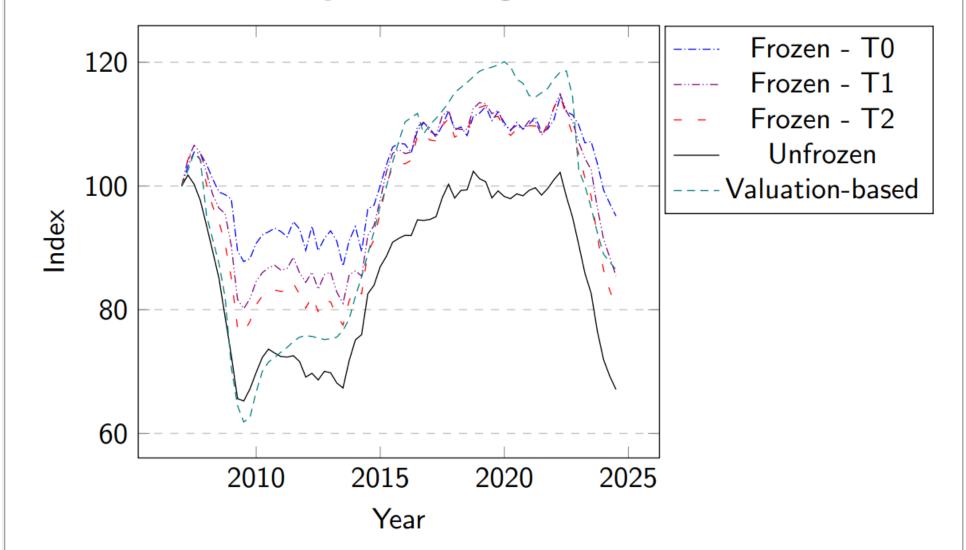
Methodology - Lead-lag relationships


- Test granger causation between transaction-based and valuation-based index
- We show standard unfrozen transaction-based indexes and the frozen versions
- We find that it is not very clear appraisers purely lag the transaction-market available to them at the time of their appraisal
- They might lag a 'true' value, but it is not transactions
- Look at liquid indicators as public proxies and demand indexes

Data

- MSCI (RCA) transaction data from 2001 to 2024
- MSCI (IPD) valuation data from 2001 to 2024
- We study the commercial office markets of the United Kingdom,
 United States and the Netherlands
- From the transaction data we create repeat-sales indexes, we run all revisions starting in 2007
- From the valuation data we use the asset value growth returns, which are directly comparable to the returns from the repeat sales data
- Also use MSCI Liquid indexes (REIT-based) and Price Expectations Gap (Demand index) (Van Dijk et al., 2020; Fisher et al., 2003)

Results - Revisions


Figure: United Kingdom - Revisions

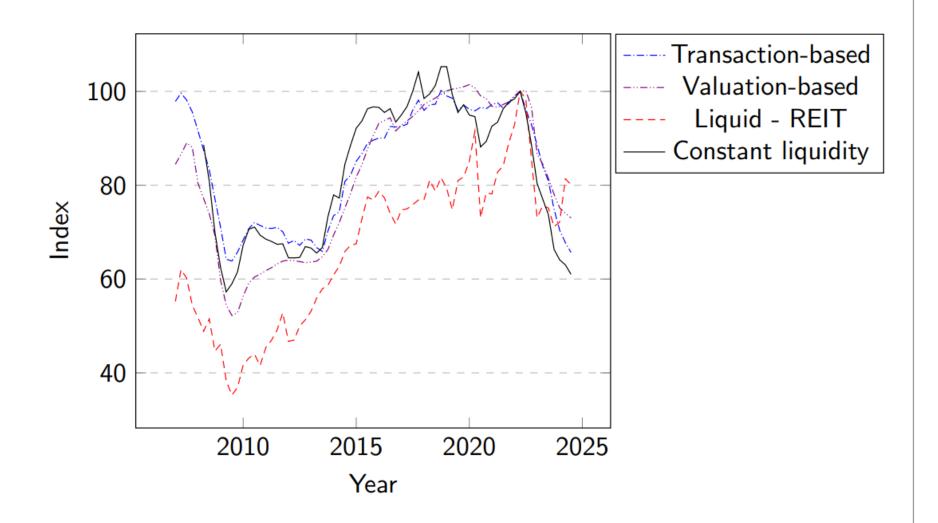
142

Results - Lead-lag

Figure: United Kingdom - Indexes

Results - Classic unfrozen Lead-lag

	Dependent variable:				
	Valuation return (Val)		Unfrozen transaction return (Trans)		
United Kingdom	(1)	(2)	(3)	(4)	
Val - t-1	0.734***	0.386***		0.386***	
	(0.082)	(0.121)		(0.133)	
Trans - t-1		0.479***	0.638***	0.313**	
		(0.130)	(0.094)	(0.143)	
Constant	-0.001	0.001	-0.002	-0.003	
	(0.003)	(0.003)	(0.003)	(0.003)	
R^2	0.542	0.619	0.406	0.473	
F value		13.482		8.446	
P value		0.000		0.005	
Note:			*p<0.1;	; **p<0.05; ***p<0.01	


◆□▶◆圖▶◆臺▶◆臺▶ 臺 釣Q@

Results - Frozen Lead-lag

United Kingdom	Dependent variable:			
	Valuation return (Val)		Frozen transaction return (Trans)	
	(1)	(2)	(3)	(4)
Val - t-1	0.734***	0.689***		0.300***
	(0.082)	(0.111)		(0.102)
Trans - t-1		0.083	0.382***	0.135
		(0.138)	(0.099)	(0.126)
Constant	-0.001	-0.001	-0.0003	-0.0003
	(0.003)	(0.003)	(0.003)	(0.003)
R^2	0.542	0.544	0.182	0.277
F value		0.368		8.698
P value		0.546		0.004
Note:	*p<0.1; **p<0.05; ***p<0.01			

What does lead? Liquidity

Figure: United Kingdom - Indexes

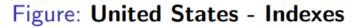
Conclusion

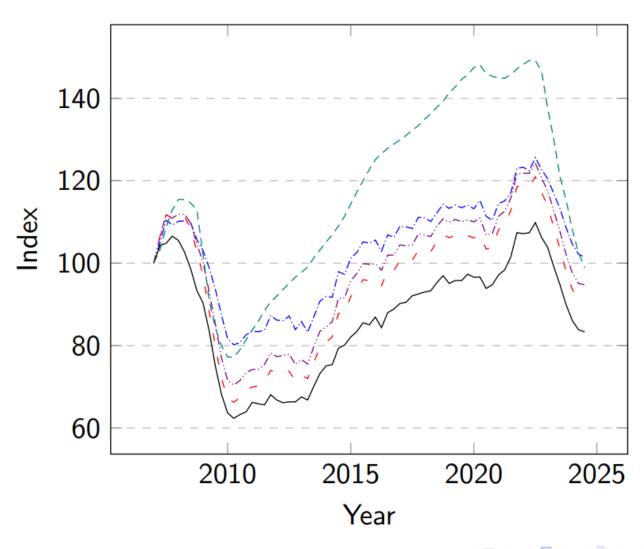
- Traditional view that appraiser lag a true value because they look at outdated transactions for their valuations seems dated
- Given the information available at the time, it does not seem to be that they lag the transaction-market
- Appraisers in some countries deserve a bit more credit, as they seem to even lead the transaction-market in low liquidity environments
- Other forms of information are used to update valuations, like yield movement or the lack in demand in the market
- This should be stimulated, appraisers should be constrained to use closed transactions
- Still notoriously lagged appraisals out there (Germany, Japan), that could be helped by UK valuation practice

Questions & Comments?

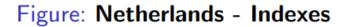
References I

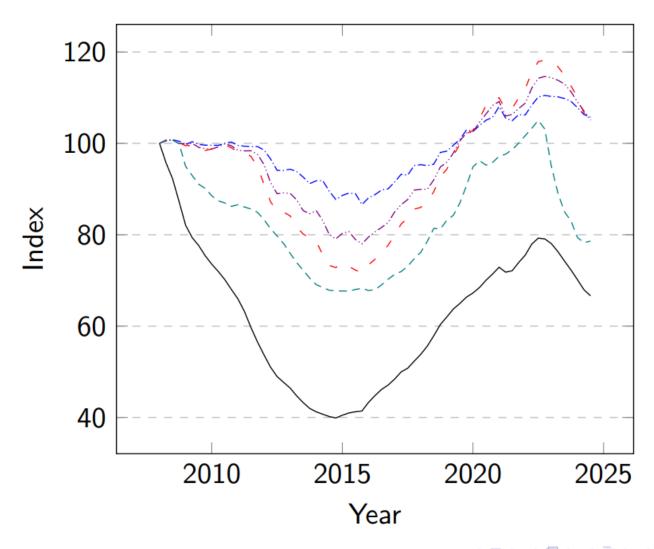
- Ang, A., Nabar, N., Wald, S.J., 2013. Searching for a common factor in public and private real estate returns. The Journal of Portfolio Management 39, 120–133.
- Barkham, R., Geltner, D., 1995. Price discovery in american and british property markets. Real Estate Economics 23, 21–44.
- Cho, Y., Hwang, S., Lee, Y.k., 2014. The dynamics of appraisal smoothing. Real Estate Economics 42, 497–529.
- Delfim, J.C., Hoesli, M., 2021. Robust desmoothed real estate returns. Real Estate Economics 49, 75–105.
- Edelstein, R.H., Quan, D.C., 2006. How does appraisal smoothing bias real estate returns measurement. The Journal of Real Estate Finance and Economics 32, 41–60.
- Fisher, J., Gatzlaff, D., Geltner, D., Haurin, D., 2003. Controlling for the impact of variable liquidity in commercial real estate price indices. Real Estate Economics 31, 269–303.


References II


- Fisher, J.D., Geltner, D., Webb, B., 1994. Value indices of commercial real estate: A comparison of index construction methods. The Journal of Real Estate Finance and Economics 9, 137–164.
- Geltner, D., 1991. Smoothing in appraisal-based returns. The Journal of Real Estate Finance and Economics 4, 327–345.
- Geltner, D., 1993. Estimating market values from appraised values without assuming an efficient market. The Journal of Real Estate Research 8, 325–345.
- Geltner, D., 2015. Real estate price indices and price dynamics: An overview from an investments perspective. The Annual Review of Financial Economics 7, 615–633.
- Geltner, D., MacGregor, B.D., Schwann, G.M., 2003. Appraisal smoothing and price discovery in real estate markets. Urban Studies 40, 1047–1064.
- Van de Minne, A., Francke, M.K., Geltner, D., White, R., 2020. Using revisions as a measure of price index quality in repeat-sales models. The Journal of Real Estate Finance and Economics 60, 514–553.

References III


- Van de Minne, A., Francke, M.K., Vlaming, W., 2025. Every sale counts: A structural chained hedonic approach. Working Paper.
- Quan, D.C., Quigley, J.M., 1991. Price formation and the appraisal function in real estate markets. The Journal of Real Estate Finance and Economics 4, 127–146.
- Van Dijk, D., Geltner, D., Van de Minne, A., 2020. The dynamics of liquidity in commercial property markets: Revisiting supply and demand indexes in real estate. The Journal of Real Estate Finance and Economics.
- Yavas, A., Yildirim, Y., 2011. Price discovery in real estate markets: A dynamic analysis. The Journal of Real Estate Finance and Economics 42, 1–29.


Appendix - Lead-lag

Appendix - Lead-lag

